Thursday, March 26, 2009

The CIMS -- No, Not the Sims

So far, my new job appears to be working out pretty well. My official job title is "test engineer" although I'm neither an engineer nor well versed in the testing protocols so beloved by product engineers, but it's a job and it allows me to get my feet wet in the world of fuel cells. It's a good time to be getting in on this project, as the number of chemistry-related subprojects is beginning to grow quickly and most of the people in the group are engineers (non-chemical). Now don't misunderstand me, these engineers are very good process engineers and they've picked up a fair amount of chemical knowledge over the years, but some of these chemistry projects really need a chemist's touch to finish them in a timely fashion.

With these projects in mind, I've already been grabbing some of my old equipment from the company's storage facility. This equipment is still in storage after all these months partly because the shiny, new lab my old group was supposed to move into is still not completed and partly because there really aren't any chemists left in that group capable of using the equipment. Anyway, I never know exactly what I'm to find during these salvage excursions. Remember the warehouse scene at the end of the "Raiders of the Lost Ark"? That's what our storage site looks like. This week I struck paydirt and I brought back the CIMS unit.

CIMS stands for Chemical Ionization Mass Spectrometer and it's great for analyzing the products typically generated during gas phase heterogeneous catalysis. In general, mass spectrometers operate by ionizing molecules using a variety of methods, followed by their separation via magnetic fields. Most mass spectrometers are electron impact types, which means they ionize molecules by bombarding them with electrons. Unfortunately, a fair number of molecules, especially organic ones, do not take kindly to this technique and tend to fragment into smaller pieces before the spectrometer can detect them. The CIMS alleviates some of this problem by first ionizing an inert gas like Kr and then letting the Kr+ ions do all the ionization. This kindler, gentler approach allows many organic molecules to remain intact and thus detectable. As an additional bonus, the appropriate selection of source gas allows you to choose which molecules to ionize. For example, detecting CO in the presence of nitrogen is problematic as they both have the same mass. This usually leaves you with four choices: find another analytical method, ignore the CO, use helium for all your experiments, or choose a new project. But with the CIMS, Xe+ only ionizes the CO, allowing the N2 to sail blissfully past the detectors.

It's not a high resolution instrument , so it only costs about $250K, but it is small (a cube about 2.5 feet per side), portable (it has wheels), and the software is sweet. The unit started right up without a hitch, but the xenon source gas cylinder is essentially empty. Xenon isn't cheap and the CIMS requires an isotopically pure sample ($$$) and so we're talking $3000 here. I haven't told the boss yet how much this free mass spectrometer is going to cost him.

I still miss working with lab glassware and synthetic chemistry, but I do have to admit this instrument does rock.

It's old news, but I'd like to add my congratulations to M. Frederick Hawthorne for having been awarded the 2009 Priestley medal for his work on boron. I admit to not having paid much attention to boron chemistry since grad school, but Hawthorne is currently located at the University of Missouri (my alma mater) and anyone who can make a water soluble boron cluster is okay in my book.

No comments:

Bookmark and Share